MTBE-ONLY GROUNDWATER RELEASES

Jay W. Jones, RG, PhD Blayne Hartman, PhD

SAM Forum & Symposium on MTBE and other Oxygenates

September 25, 2002 San Diego, CA

CONTAINS

THE STATE OF CALIFORNIA HAS DETERMINED THAT THE USE OF THIS CHEMICAL PRESENTS A SIGNIFICANT RISK TO THE ENVIRONMENT

UST Release Scenarios

- Catastrophic Release of Gasoline
- Gasoline Release
 w/ retained PSH ("soils-only" release)
- Vapor
- All of the above

UST Vapor Systems

Stage I Vapor Recovery System Vapor Vent Fuel flowing into Vapors storage tank flowing out of Vapor

tank

Vapor Problems?

Underground Storage Tank System Field-Based Research Project Report, submitted to SWRCB May 31, 2002

- 182 UST upgraded Systems tested
- 61% had detectable vapor leaks
- Majority of leaks in tank excavation
- Many detected at tank top (fill/vent risers)
- None likely exceeded UST integrity test standard of 0.1 gph (2.4 gallons/day....)
- Hear more from SWRCB at 1:40 today!

The Great Escape, 1

LUSTLine Bulletin 30, by Blayne Hartman (www.tegenv.com)

What vapors are coming out of the UST?

First...Calculate vapor pressures of gasoline compounds

$$P_i = VP_i * MF_i$$

Vp_i, is the Vapor Pressure of component i

MF_i, is the Mole Fraction of component i

The Great Escape, 2

Then...Convert Pressures into relative concentrations

$$C_i = VP_i *MW_i *MF_i / RT$$

C_i, concentration (mass/liter) of component i
 MW_i, molecular weight of component i
 MF_i, is the mole fraction of component i
 RT, is the universal gas constant times temperature

The Great Escape...of MTBE

	VP	MW	MF	$\mathbf{C}_{ ext{vapor}}$
	(atm)	(g/M)		(ug/L)
Benzene	0.13	78	0.025	10,600
MTBE	0.32	88	0.125	147,000
Alkanes (C4-C8)	0.2	100	0.50	400,000

Chronic Release "soils-only" w/ PSH

- Residual gasoline in vadose zone
- Soils are now the "UST"
- Calculation is the same as for the UST
- Apply Equation 6-13 in SAM Manual and in vapor risk spreadsheet

(for TPH >100 mg/kg)

MTBE Vapor and Water

Ref: SAM Manual

Multiphase Equilibrium

$$C_{\text{total}} = C_{\text{vapor}} + C_{\text{water}} + C_{\text{soil}} (... + C_{\text{PSH}})$$

....+ PSH as condensate...?

$$C_{\text{vapor}} = H C_{\text{water}}$$

$$C_{\text{soil}} = K_{\text{oc}} F_{\text{oc}} C_{\text{w}}$$

	H, (d'less)	S, mg/L	K _{oc}
Benzene	0.23	1800	62
MTBE	0.024	48,000	78

"Example Soil"

Strategies for Characterizing subsurface Releases of Gasoline containing MTBE, API, August 2000, No. 11

- Calculated equilibrium distribution of Benzene and MTBE in an unsaturated soil
- Note: persistence of MTBE vapor

Vapor Movement, 1

Blayne Hartman, LUSTLine Bulletin 28/ SAM Manual

- In absence of recharge, vapors will diffuse
- Effective Diffusivity

$$D_{e} = D_{air} (\Theta_{air}^{10/3}/\Theta_{total}^{2})$$
 (SAM Manual)

For MTBE, SAM default soil

$$\Theta_{\text{air}} = 0.20$$

 $\Theta_{\text{total}} = 0.30$

$$D_{air} = 0.08$$

$$D_e = 0.00418 \text{ cm}^2/\text{sec}$$

Vapor Movement, 2

Blayne Hartman, LUSTLine Bulletin 28

- Diffusive velocity: no advection or recharge
- Distance over time (w/continuous source strength)

Distance =
$$(2 * D_e * time)^{1/2}$$

 $D_e = 0.00418 \text{ cm}^2/\text{sec for MTBE}$; time = 1 year

Distance = 513 cm (17 feet) per year

.....Direct Implications for shallow groundwater MTBE-only release from vapor phase

Vadose Zone Transport

Simulation of Transport of MTBE to Groundwater From Small-Volume Releases of Gasoline in the Vadose Zone. Lahvis and Rehmann API Research Bulletin, June 2000, no. 10

- Based on USGS Model R-UNSAT
 by Matthew Lahvis and Arthur Baehr
- Multi-species transport
- Variable moisture content
- Diffusion, recharge, sorption
- O₂ and biodegradation

Thanks to Dr. Matt Lahvis, Shell Global Solutions (US) Inc. for following graphics

WHAT DO WE KNOW APRIORI (MTBE vs. C₆H₆)

source composition

- phase-partitioning properties
- principal transport mechanisms

ASSUMPTIONS

- source is immobile
- MTBE is non reactive, benzene is reactive
- hydrostatic moisture distribution
- soil properties (van Genuchten)
- equilibrium partitioning

BOUNDARY CONDITIONS

LAND SURFACE - atmospheric

SOURCE - constant concentration

- time dependent

WATER TABLE

MTBE, C_6H_6 : C = 0

O₂: impermeable

r axis

C_6H_6 DISTRIBUTION: CHRONIC RELEASE (infiltration rate = 20 cm/yr)

O₂ **DISTRIBUTION:** CHRONIC RELEASE (infiltration rate = 20 cm/yr)

MTBE DISTRIBUTION: CHRONIC RELEASE (infiltration rate = 20 cm/yr)

WHAT WE LEARNED

- enrichment in MTBE relative to benzene
 - -- potential for ppm concentrations (chronic)
- capillary zone limits mass transport
- diffusion to the atmosphere significant massloss pathway
- breakthrough times variable

Highlights: Gasoline Release w/ MTBE

- MTBE preferentially released as vapor from UST
- MTBE:Benzene > 10 in vapor
- "soils-only" case also leads to preferential release of MTBE vapor
- MTBE Vapor Can Move Quickly, > 10 ft/yr
- Vadose zone recharge and biodegradation 'enrich' water phase relative to MTBE
- If BTEX and MTBE in groundwater, expect PSH (also consider if no O₂)

Local Examples

courtesy of Jim Schuck, DEH

- 12 active gas stations w/ "H numbers"
- 1997 soil vapor data at time of transaction
- Soil vapor samples at dispensers, lines, and USTs
- 92 vapor samples obtained

Soil Vapor Results

- All 12 sites w/detected MTBE
- 47% of probes encountered MTBE vapor
- range: 1480 to 357,000 ppb-v
- 72% encountered Benzene vapor
- range: 26 to 33,600 ppb-v
-DL for Benzene was 25 ppmv
-DL for MTBE was 1380 ppmv

MTBE:Benzene in Vapor

Case Example: "4887"

- 9/97 Soil Vapor Survey
- Work was done in 1998 to upgrade USTs
- Groundwater at 14 to 17 ft bgs
- Gravelly sand and Silty sand overlying DG

Soil Vapor Data: 1997

Location	Benzene	MTBE	Ratio
	ppb-v	ppb-v	MTBE:B
T 1	43	35,600	828
T2	117	ND<1380	• • •
T3	2290	30,300	13
D1	104	4010	39
D2	152	3570	24
D3	80	ND<1380	• • •
D4	90	ND<1380	• • •

Groundwater Data: 1999/2000

MW-3

	DIEM, ag E
5/4/99	nd/nd/nd/n
1/11/00	nd/nd/nd/n
8/15/00	nd/nd/nd/n

BTEX, ug/L	MTBE, ug/L
nd/nd/nd/nd	79,000
nd/nd/nd/nd	150,000
nd/nd/nd/nd	180,000

SMW-17

	BTEX, ug/L	MTBE, ug/L
5/4/99	46/2/1.7/4.6	30,000
1/11/00	nd/nd/nd/nd	29,000

Summary

- Yes, MTBE-only groundwater plumes can occur
- Source can be either liquid or vapor: both have similar behavior in vadose zone
- Expect MTBE:Benzene vapor > 10:1
- If soils are relatively dry, MTBE vapor will persist...and diffuse from release point
- Suggests SVE remedy may be feasible

The Future: Ethanol

